38 research outputs found

    A Qualified Kolmogorovian Account of Probabilistic Contextuality

    Full text link
    We describe a mathematical language for determining all possible patterns of contextuality in the dependence of stochastic outputs of a system on its deterministic inputs. The central notion is that of all possible couplings for stochastically unrelated outputs indexed by mutually incompatible values of inputs. A system is characterized by a pattern of which outputs can be "directly influenced" by which inputs (a primitive relation, hypothetical or normative), and by certain constraints imposed on the outputs (such as Bell-type inequalities or their quantum analogues). The set of couplings compatible with these constraints represents a form of contextuality in the dependence of outputs on inputs with respect to the declared pattern of direct influences.Comment: Lecture Notes in Computer Science 8369, 201-212 (2014

    Probability Measures and projections on Quantum Logics

    Full text link
    The present paper is devoted to modelling of a probability measure of logical connectives on a quantum logic (QL), via a GG-map, which is a special map on it. We follow the work in which the probability of logical conjunction, disjunction and symmetric difference and their negations for non-compatible propositions are studied. We study such a G G -map on quantum logics, which is a probability measure of a projection and show, that unlike classical (Boolean) logic, probability measure of projections on a quantum logic are not necessarilly pure projections. We compare properties of a GG-map on QLs with properties of a probability measure related to logical connectives on a Boolean algebra

    Entanglement Zoo II: Examples in Physics and Cognition

    Full text link
    We have recently presented a general scheme enabling quantum modeling of different types of situations that violate Bell's inequalities. In this paper, we specify this scheme for a combination of two concepts. We work out a quantum Hilbert space model where 'entangled measurements' occur in addition to the expected 'entanglement between the component concepts', or 'state entanglement'. We extend this result to a macroscopic physical entity, the 'connected vessels of water', which maximally violates Bell's inequalities. We enlighten the structural and conceptual analogies between the cognitive and physical situations which are both examples of a nonlocal non-marginal box modeling in our classification.Comment: 11 page

    Meaning-focused and Quantum-inspired Information Retrieval

    Full text link
    In recent years, quantum-based methods have promisingly integrated the traditional procedures in information retrieval (IR) and natural language processing (NLP). Inspired by our research on the identification and application of quantum structures in cognition, more specifically our work on the representation of concepts and their combinations, we put forward a 'quantum meaning based' framework for structured query retrieval in text corpora and standardized testing corpora. This scheme for IR rests on considering as basic notions, (i) 'entities of meaning', e.g., concepts and their combinations and (ii) traces of such entities of meaning, which is how documents are considered in this approach. The meaning content of these 'entities of meaning' is reconstructed by solving an 'inverse problem' in the quantum formalism, consisting of reconstructing the full states of the entities of meaning from their collapsed states identified as traces in relevant documents. The advantages with respect to traditional approaches, such as Latent Semantic Analysis (LSA), are discussed by means of concrete examples.Comment: 11 page

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    Entanglement Zoo I: Foundational and Structural Aspects

    Full text link
    We put forward a general classification for a structural description of the entanglement present in compound entities experimentally violating Bell's inequalities, making use of a new entanglement scheme that we developed recently. Our scheme, although different from the traditional one, is completely compatible with standard quantum theory, and enables quantum modeling in complex Hilbert space for different types of situations. Namely, situations where entangled states and product measurements appear ('customary quantum modeling'), and situations where states and measurements and evolutions between measurements are entangled ('nonlocal box modeling', 'nonlocal non-marginal box modeling'). The role played by Tsirelson's bound and marginal distribution law is emphasized. Specific quantum models are worked out in detail in complex Hilbert space within this new entanglement scheme.Comment: 11 page

    Minding impacting events in a model of stochastic variance

    Get PDF
    We introduce a generalisation of the well-known ARCH process, widely used for generating uncorrelated stochastic time series with long-term non-Gaussian distributions and long-lasting correlations in the (instantaneous) standard deviation exhibiting a clustering profile. Specifically, inspired by the fact that in a variety of systems impacting events are hardly forgot, we split the process into two different regimes: a first one for regular periods where the average volatility of the fluctuations within a certain period of time is below a certain threshold and another one when the local standard deviation outnumbers it. In the former situation we use standard rules for heteroscedastic processes whereas in the latter case the system starts recalling past values that surpassed the threshold. Our results show that for appropriate parameter values the model is able to provide fat tailed probability density functions and strong persistence of the instantaneous variance characterised by large values of the Hurst exponent is greater than 0.8, which are ubiquitous features in complex systems.Comment: 18 pages, 5 figures, 1 table. To published in PLoS on

    The Tacit ‘Quantum’ of Meeting the Aesthetic Sign; Contextualize, Entangle, Superpose, Collapse or Decohere

    Get PDF
    The semantically ambiguous nature of the sign and aspects of non-classicality of elementary matter as described by quantum theory show remarkable coherent analogy. We focus on how the ambiguous nature of the image, text and art work bears functional resemblance to the dynamics of contextuality, entanglement, superposition, collapse and decoherence as these phenomena are known in quantum theory. These quantumlike properties in linguistic signs have previously been identified in formal descritions of e.g. concept combinations and mental lexicon representations and have been reported on in the literature. In this approach the informationalized, communicated, mediatized conceptual configuration—of e.g. the art work—in the personal reflected mind behaves like a quantum state function in a higher dimensional complex space, in which it is time and again contextually collapsed and further cognitively entangled (Aerts et al. in Found Sci 4:115–132, 1999; in Lect Notes Comput Sci 7620:36–47, 2012). The observer–consumer of signs becomes the empowered ‘produmer’ (Floridi in The philosophy of information, Oxford University Press, Oxford, 2011) creating the cognitive outcome of the interaction, while loosing most of any ‘classical givenness’ of the sign (Bal and Bryson in Art Bull 73:174–208, 1991). These quantum-like descriptions are now developed here in four example aesthetic signs; the installation Mist room by Ann Veronica Janssens (2010), the installation Sections of a happy moment by David Claerbout (2010), the photograph The Falling Man by Richard Drew (New York Times, p. 7, September 12, 2001) and the documentary Huicholes. The Last Peyote Guardians by Vilchez and Stefani (2014). Our present work develops further the use of a previously developed quantum model for concept representation in natural language. In our present approach of the aesthetic sign, we extend to individual—idiosyncratic—observer contexts instead of socially shared group contexts, and as such also include multiple idiosyncratic creation of meaning and experience. This irreducible superposition emerges as the core feature of the aesthetic sign and is most critically embedded in the ‘no-interpretation’ interpretation of the documentary signal
    corecore